Machine Learning: the Automation of Knowledge Acquisition Using Kohonen Self-organising Map Neural Network
نویسندگان
چکیده
In machine learning, a key aspect is the acquisition of knowledge. As problems become more complex, and experts become scarce, the manual extraction of knowledge becomes very difficult. Hence, it is important that the task of knowledge acquisition be automated. This paper proposes a novel method that integrates neural network and expert system paradigms to produce an automated knowledge acquisition system. A rule-generation algorithm is proposed, whereby symbolic rules are generated from a neural network that has been trained by an unsupervised Kohonen self-organising map (KSOM) learning algorithm. The generated rules are evaluated and verified using an expert system inference engine. To demonstrate the applicability of the proposed method to real-world problems, a case study in medical diagnosis is presented.
منابع مشابه
Knowledge Extraction from Artificial Neural Networks and Applications
Knowledge acquisition is a frequent bottleneck in artificial intelligence applications. Neural learning may offer a new perspective in this field. Using Self-Organising Neural Networks, as the Kohonen model, the inherent structures in high-dimensional input spaces are projected on a low dimensional space. The exploration of structures resp. classes is then possible applying the U-Matrix method ...
متن کاملAn Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network
RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...
متن کاملUsing artificial neural networks for solving chemical problems Kohonen self-organising feature maps and Hopfield networks
This second part of a Tutorial on neural networks focuses on the Kohonen self-organising feature map and the Hopfield network. First a theoretical description of each type is given. The practical issues concerning applications of the networks are then discussed. For each network, a description is given of the types of problems which can be tackled by the specific neural network, followed by a p...
متن کاملART–KOHONEN neural network for fault diagnosis of rotating machinery
In this paper, a new neural network (NN) for fault diagnosis of rotating machinery which synthesises the theory of adaptive resonance theory (ART) and the learning strategy of Kohonen neural network (KNN), is proposed. For NNs, as the new case occurs, the corresponding data should be added to their dataset for learning. However, the ‘off-line’ NNs are unable to adapt autonomously and must be re...
متن کاملAutomated Knowledge Acquisition Based on Unsupervised Neural Network and Expert System Paradigms
-Self-organizing maps are an unsupervised neural network model that lends itself to the cluster analysis of high dimensional input data. However, interpreting a trained map proves to be difficult because the features responsible for specific cluster assignment are not evident from resulting map representation. Paper presents an approach for automated knowledge acquisition system using Kohonen s...
متن کامل